GEBCO数据使用方法介绍
GEBCO_2020 Grid是由海洋总测深图(General Bathymetric Chart of the Oceans,GEBCO)发布的最新的全球测深产品,并且是通过日本财团-GEBCO Seabed 2030项目开发的。
1. GEBCO网站数据集类型
该网站提供GEBCO_2020 Grid和GEBCO_2020 TID Grid两种数据集,网格的分辨率为15弧秒。经纬度范围从89°59'52.5''N到89°59'52.5''S;179°59'52.5''W 到179°59'52.5''E。它由43200行x 86400列组成,提供了3,732,480,000个数据点。GEBCO的全球海拔模型是通过异构数据类型的同化而产生的,并假设它们均以平均海平面为参考。
两种数据均有netCDF、 Data GeoTiff 、Esri ASCII raster三种格式可供使用者下载。在netCDF文件中,GEBCO_2020 Grid存储为一个二维数组,该数组中包含了以米为单位的2字节高程整数值。测深深度为负值,地形高度为正值。Data GeoTiff 、Esri ASCII raster两种格式的全局数据集和全局TID网格包含8个区域为一组,以单个压缩数据文件的形式提供。(每个区域的面积为90°x 90°)
1.1 GEBCO_2020 Grid地势数据集
GEBCO_2020 Grid是海洋和陆地的连续全球地形模型,包括来自许多国际和国家数据存储库以及区域测绘计划的数据集。其空间分辨率为15弧秒,是陆地地形与测量和估计的海底地形的融合。GEBCO_2020 Grid是由四个Seabed 2030区域中心开发并进行了补充的网格测深数据集。区域中心主要根据多波束数据,编辑了其负责区域的网格测深数据集。然后将这些区域网格提供给Seabed 2030全球中心。
1.2 GEBCO_2020 TID Grid 数据集
GEBCO Grid附带一个类型标识符(Type Identifier,TID)网格,即GEBCO_2020 TID Grid数据集,它标识了GEBCO网格中相应网格单元所基于的源数据的类型。TID的定义中,0代表陆地数据,10代表通过单波束测量的水深数据,11代表通过多波束测量的水深数据等等。(详情可参考随数据集下载的文件GEBCO_2020_Grid.pdf)
2. GEBCO数据集下载
网站地址为https://www.gebco.net/data_and_products/gridded_bathymetry_data/
2.1 全球地势数据集下载
GEBCO_2020 Grid和GEBCO_2020 TID Grid两种数据集均可点击后方对应格式直接下载。
2.2 局部地势数据集下载
在网站中点击application即可进入下载界面。可使用Ctrl+鼠标左键直接在地图上选择需要地势数据的区域,也可在左侧输入所需要区域的经纬度范围。
选择好范围之后在左侧选择需要的格式,点击Add to basket即可下载。
3. GEBCO数据集使用说明
3.1 GEBCO数据集说明
Format:
netcdf4
Global Attributes:
Conventions = 'CF-1.6'
title = 'The GEBCO_2020 Grid - a continuous terrain model for oceans and land at 15 arc-second intervals'
institution = 'On behalf of the General Bathymetric Chart of the Oceans (GEBCO), the data are held at the British Oceanographic Data Centre (BODC).'
source = 'The GEBCO_2020 Grid is the latest global bathymetric product released by the General Bathymetric Chart of the Oceans (GEBCO) and has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and GEBCO. The Seabed 2030 Project aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor and make it available to all.'
history = 'Information on the development of the data set and the source data sets included in the grid can be found in the data set documentation available from https://www.gebco.net'
references = 'DOI: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9'
comment = 'The data in the GEBCO_2020 Grid should not be used for navigation or any purpose relating to safety at sea.'
node_offset = 1
Dimensions:
lon = 86400
lat = 43200
Variables:
lon
Size: 86400x1
Dimensions: lon
Datatype: double
Attributes:
standard_name = 'longitude'
long_name = 'longitude'
units = 'degrees_east'
axis = 'X'
sdn_parameter_urn = 'SDN:P01::ALONZZ01'
sdn_parameter_name = 'Longitude east'
sdn_uom_urn = 'SDN:P06::DEGE'
sdn_uom_name = 'Degrees east'
lat
Size: 43200x1
Dimensions: lat
Datatype: double
Attributes:
standard_name = 'latitude'
long_name = 'latitude'
units = 'degrees_north'
axis = 'Y'
sdn_parameter_urn = 'SDN:P01::ALATZZ01'
sdn_parameter_name = 'Latitude north'
sdn_uom_urn = 'SDN:P06::DEGN'
sdn_uom_name = 'Degrees north'
elevation
Size: 86400x43200
Dimensions: lon,lat
Datatype: int16
Attributes:
standard_name = 'height_above_reference_ellipsoid'
long_name = 'Elevation relative to sea level'
units = 'm'
sdn_parameter_urn = 'SDN:P01::BATHHGHT'
sdn_parameter_name = 'Sea floor height (above mean sea level) {bathymetric height}'
sdn_uom_urn = 'SDN:P06::ULAA'
sdn_uom_name = 'Metres'
3.2 GEBCO数据绘制说明(以中国南海为例)
中国南海海拔图
Matlab程序如下:
clc;
clear all;
close all;
ncdisp('GEBCO_2020.nc');%查看文件内容
filename=('GEBCO_2020.nc');
lon=ncread(filename,'lon');%读入经度
lat=ncread(filename,'lat');%读入纬度
elevation=ncread(filename,'elevation');%读入海拔高度
lonS=105;%经度范围[-180,180],lonE>lonS
lonE=123;
latS=6;%纬度范围[-90,90],latE>latS
latE=22;
lon1=lon((lonS+180)*240+1:(lonE+180)*240);
lat1=lat((latS+90)*240+1:(latE+90)*240);
elevation1=elevation((lonS+180)*240+1:(lonE+180)*240,(latS+90)*240+1:(latE+90)*240);
elevation2=double(elevation1);%转换数据类型
elevation3=elevation2';%转置得到常用的经纬度标识
figure
m_proj('miller','lon',[lonS,lonE],'lat',[latS,latE]);
m_pcolor(lon1,lat1,elevation3);
shading flat;
colormap([m_colmap('blues',-min(min(elevation3))); m_colmap('gland',max(max(elevation3)))]);
brighten(.2);
m_grid('linestyle','none','box','fancy','tickdir','in');
c=colorbar('eastoutside','fontsize',10);
set(get(c,'title'),'string','[m]');